
Introduction
to Git

The bare minimum any developer
MUST know about Git

xavier.nodet@gmail.com

Installation

• Windows:
- https://git-scm.com/download/win

• Mac:
- open a Terminal
- enter the command git and follow the prompts

• Linux:
- already there

https://git-scm.com/download/win

If you will only remember these ones...

$ git init

$ git add [existing-file]

$ git commit -a -m "Summary of the changes"

$ git log

$ git show [commit-id]

$ git diff

Let's make this story a little bit longer

• Git is a version control system

• Used by a vast majority of companies and software projects

• It saves the state (existence, content, permissions) of a set of files,
and allows to navigate the history of these files

• Primarily deals with text files, but binary files are accepted

• Git helps for backup, history, documentation, bug hunting...

• And facilitates collaboration between developers

git init

• Creates a hidden .git directory in the current directory

• This directory will hold the complete history of the whole project

• It is known as the local repository

• Don't touch its content!

git add myfile.txt

• This tells Git that you want it to store myfile.txt

• From now on, Git will track the existence and content of the file

git commit –a -m "Summary of

the changes"

• Takes a snapshot of all the files known to Git

• Records that snapshot in the local repository, the .git directory

• Gives it an id, a 40 digits hexadecimal string

git log

• Lists all the commits in the current project

• Displays the id, author, date and commit message

git log

• Lists all the commits in the current project

• Displays the id, author, date and commit message

$ git log -2
commit 69bdf1eec4c8c82f94bd4b864da3e5d734861cba (HEAD -> master, origin/master)
Author: Xavier Nodet <xavier.nodet@gmail.com>
Date: Mon May 3 17:17:03 2021 +0200

 Comments

commit 93491245b9109b68b317020f2590926399714843
Author: Xavier Nodet <xavier.nodet@gmail.com>
Date: Mon May 3 16:47:21 2021 +0200

 Don't restrict local network

git log

• Lists all the commits in the current project

• Displays the id, author, date and commit message

$ git log --color --pretty=format:"%C(yellow)%h%C(reset) %<(50,trunc)%s %C(green)%ad%C(reset) %C(blue)[%an]%C(reset)" --relative-date --decorate
69bdf1e Comments 3 weeks ago [Xavier Nodet]
9349124 Don't restrict local network 3 weeks ago [Xavier Nodet]
b2f8b75 Add a README 3 weeks ago [Xavier Nodet]
ab400de Rename the speed variables 3 weeks ago [Xavier Nodet]
929bf34 100 as SPEED3 is the max we can do without degra.. 3 weeks ago [Xavier Nodet]
8ea1bcf Add a script to remove the limits 1 year, 5 months ago [Xavier Nodet]
d0cb30e Spare some outbound traffic from restrictions 1 year, 5 months ago [Xavier Nodet]
b08aed8 Limit outbound as well 1 year, 5 months ago [Xavier Nodet]
5af4877 And now, it works... 1 year, 5 months ago [Xavier Nodet]
09258b4 Make the script executable 1 year, 5 months ago [Xavier Nodet]
354231b Direct copy from SuperUser 1 year, 5 months ago [Xavier Nodet]

git show [commit-id]

git show --oneline -U1 ab400de
ab400de Rename the speed variables
diff --git a/throttle.sh b/throttle.sh
index 3218d04..266fcea 100755
--- a/throttle.sh
+++ b/throttle.sh
@@ -3,4 +3,4 @@
Max speeds in KB/sec
-SPEED1=1000
-SPEED3=100
+INBOUND=1000
+OUTBOUND=100

@@ -39,5 +39,5 @@ EOF
Create the dummynet queue
-dnctl pipe 1 config bw ${SPEED1}Kbyte/s queue 50
+dnctl pipe 1 config bw ${INBOUND}Kbyte/s queue 50
dnctl pipe 2 config queue 50
-dnctl pipe 3 config bw ${SPEED3}Kbyte/s queue 50
+dnctl pipe 3 config bw ${OUTBOUND}Kbyte/s queue 50
dnctl pipe 4 config queue 50

git diff

• Lists the changes since the last commit

• Similar output as git show

Other very useful commands

$ git status

$ git reset --hard HEAD

$ git checkout [commit-id]

$ git tag V1.0 69bdf1e

$ git blame myfile.txt

$ git checkout master

• List modified files

• Forget uncommitted changes

• Restores the working copy to
the state it had in the commit
id.

• Assigns a name to a commit

• List the file with date and
commit id that last touched
each line.

• Get back to the default branch

Collaboration

• Git facilitates collaboration in a team

• Typically, one repository serves as the collaboration hub

• For example https://github.com

• Each developer can add commits on top of the others'

• One gets other's commits with git pull

• And publishes his own commits with git push

https://github.com/

Connecting a local repo to GitHub

• Visit https://github.com/new and create a repository

• Note the instructions to push an existing repo

• Run these instructions in your local repo

• From now on, git push is all you need to propagate your commits
to the repo on GitHub.

https://github.com/new

Branching

• Trying out new ideas may be easier/safer if done in isolation

• The goal would be to push only once the whole thing is done

• Branches build a 'copy' of the current state

• Committing in a branch doesn't impact the other branches

• When ready, you merge back your changes

For more information

• The Git parable:
- https://tom.preston-werner.com/2009/05/19/the-git-parable.html
- https://youtu.be/jm7QsI-nNjk

• Pro Git
- HTML: https://git-scm.com/book/en/v2
- Available as PDF or epub on the same page

• Tons of other sources...

https://tom.preston-werner.com/2009/05/19/the-git-parable.html
https://youtu.be/jm7QsI-nNjk
https://git-scm.com/book/en/v2

	Slide 1: Introduction to Git
	Slide 2: Installation
	Slide 3: If you will only remember these ones...
	Slide 4: Let's make this story a little bit longer
	Slide 5: git init
	Slide 6: git add myfile.txt
	Slide 7: git commit –a -m "Summary of the changes"
	Slide 8: git log
	Slide 9: git log
	Slide 10: git log
	Slide 11: git show [commit-id]
	Slide 12: git diff
	Slide 13: Other very useful commands
	Slide 14: Collaboration
	Slide 15: Connecting a local repo to GitHub
	Slide 16: Branching
	Slide 17: For more information

